SEVEN AROMATIC COMPOUNDS FROM BARK OF CINNAMOMUM CASSIA*

MITSUHIKO MIYAMURA, TOSHIHIRO NOHARA†, TOSHIAKI TOMIMATSU and ITSUO NISHIOKA‡

Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi 1-78, Tokushima 770, Japan, ‡Faculty of Pharmaceutical Sciences, Kyushu University, Maedashi 3-1-1, Higashi-ku, Fukuoka 812, Japan

(Received 12 May 1982)

Key Word Index—Cinnamomum cassia, Lauraceae, bark, Cinnamomi Cortex, lyoniresinol glucoside, 3,4,5trimethoxyphenol apiosylglucoside, syringaresinol, epicatechin derivatives, cinnamic aldehyde cyclic glycerol 1,3acetal

Abstract—Seven aromatic compounds have been obtained from the dried bark of Cinnamomum cassia lyoniresinol 3α- $O-\beta$ -D-glucopyranoside, 3,4,5-trimethoxyphenol β -D-apiofuranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranoside, (\pm) -syringaresinol, two epicatechin derivatives and two cinnamic aldehyde cyclic glycerol 1,3-acetals

INTRODUCTION

We have recently obtained a series of diterpenes [1-8] from the fraction exhibiting anti-allergic activity of the water extractive of Cinnamomi Cortex (the dried bark of Cinnamomum cassia Blume) In connection with our study of the above active fraction, seven aromatic compounds 1-7 have been further isolated. This paper deals with their structural determination by chemical and spectral means

RESULTS AND DISCUSSION

Compound 1, an amorphous powder, $[\alpha]_D + 224^\circ$, showed absorptions due to the hydroxyl (3400 cm⁻¹, strong) and aromatic ring (1570 cm⁻¹) In the ¹³C NMR spectrum (Table 1), together with the carbon signals ascribable to the glucopyranosyl residue and four aromatic methoxyl groups, those due to 18 carbons were observed, among which 12 are ascribable to two substituted benzene rings and two to the carbinol carbons The above evidence was reminiscent of a lignan monoglucopyranoside for 1 Compound 1 yielded, on enzymic hydrolysis with hesperidinase or acid hydrolysis, an aglycone (1b), mp 185–187°, $[\alpha]_D + 580^\circ$, along with Dglucose Its aglycone was identified with the 4-aryltetralintype lignan derivative, lyoniresinol [9-16], by analyses of the 13C NMR, 1H NMR and mass spectra of its acetate (1c) and direct comparison (mp, IR, TLC) with an authentic specimen Therefore, 1 is a lyoniresinol monoglucoside In order to decide the location of the glucosyl linkage to the aglycone (1b), a comparison of the ¹³C NMR spectra of 1 and 1b was undertaken In referring to the assignment (in DMSO- d_6) [17] of lyoniside (lyoniresinol 3α -O- β -D-xylopyranoside) [9–11, 16] by Vecchietti, we reassigned 1 and lb as listed in Table 1 using pyridine- d_5 as solvent. The glycosidation shifts [18, 19] at

†To whom correspondence should be addressed

C-3 α were observed as +73 ppm suggesting that the glucopyranosyl residue combined to the hydroxyl at C-3a As regards the configuration of its glucosyl linkage, it was

^{*}Part 8 in the series "Studies on the Constituents of Cinnamomi Cortex" For Part 7 see Nohara, T. Kashiwada, Y. Tomimatsu. T and Nishioka, I (1982) Phytochemistry 21, 2130

M MIYAMURA et al

Table 1 13C NMR data of 1 and 1a-1c

	1	1a	1b	1c
1	32 4 (t)	33 4	33 8	33 5
2	38 8 (d)	35 7	41 6	354
2α	65 5 (t)	66 3	66 4	66 2
3	45 8 (d)	44 8	49 4	44 3
3α	71 4 (t)	70 0	64 1	63 2
4	42 2 (d)	41 6	42 2	45 8
5	147 6 (s)	151 0	148 2	1506
6	138 5 (s)	131 8	139 4	1318
7	147 5 (s)	151 6	147 9	151 6
8	107 3 (d)	107 0	107 3	106 5
9	129 3 (s)	135 5	129 5	134 9
10	126 2 (s)	1240	1266	1240
1'	138 9 (s)	144 8	138 9	144 6
2′	107 1 (d)	105 0	107 3	104 8
3′	148 6 (s)	1520	148 9	151 6
4′	135 1 (s)	135 7	1358	128 3
5′	148 6 (s)	1520	148 9	151 6
6′	107 1 (d)	105 0	107 3	104 8
Glc-1"	104 5 (d)	101 3	_	_
2"	748 (d)	71 3		_
3"	78 1 (d)	72 9		_
4"	71 4 (d)	68 5	_	_
5"	78 1 (d)	72 0		_
6"	62 5 (t)	62 0	_	
OMe-5	59 6 (q)	60 3	59 4	59 9
OMe-7	56 1 (q)	56 1	56 1	56 0
OMe-3'	56 5 (q)	56 3	56 4	56 1
OMe-5'	56 5 (q)	56 3	564	56 1

Solvents 1 and 1b, pyridine-d₅, 1a and 1c, CDCl₃

supposed to be β on the basis of the J value (d, J=7 Hz at δ 4 47) of the anomeric proton in the ¹H NMR spectrum of the acetate of 1 (1a) Consequently, 1 is lyoniresinol 3α -O- β -D-glucopyranoside

Compound 2, an amorphous powder, $[\alpha]_D - 262^\circ$, was converted to the corresponding acetate (2a) showing m/z 730 [M]⁺, 547 [terminal peracetylated hexosyl pentosyl cation], 259 [terminal peracetylated pentosyl cation], $184 \left[C_9 H_{12} O_4^{+} \right]$ aglycone] in the mass spectrum The ¹H NMR spectrum of 2a exhibited all singlet signals due to three aromatic methoxyls at δ 3 78 (×1), 3 82 (×2) and the aromatic protons (2H) at $\delta 627$ Since no NOE effect was observed between the aromatic protons (δ 6 27) and the methoxyl at C-4 (δ 3 78), the aglycone moiety was deduced to be 3,4,5-trimethoxyphenol Compound 2 gave, on acid hydrolysis, a mixture of methyl glycosides of glucopyranose and apiofuranose Moreover, the 13C NMR spectrum of 2 revealed the sugar moiety to represented as β -D-apiofuranosyl- $(1 \rightarrow 6)$ - β -Dglucopyranosyl due to the shifts by +58 and -14 ppm at C-6 and C-5, respectively, in the carbons of the glucosyl part This assignment is in good accordance with that of an alkene glycoside [20] having the same sugar part isolated from Ligustrum japonicum Thunb Consequently, 2 is 3,4,5-trimethoxyphenol 1-O- β -D-apiofuranosyl-(1 \rightarrow 6)- β -D-giucopyranoside

Compound 3, colorless needles, mp 168–170°, $[\alpha]_D$ 0°, MS (m/z) 418 $[M]^+$, was identified as (\pm) -syringaresinol by the ¹H NMR spectrum of its acetate

Compound 4, colorless needles, mp 117-119, [a]D

 $-34\,0^\circ$, MS $(m/z)\,332\,[{\rm M}]^+$, showed signals ascribable to 12 aromatic carbons at $\delta\,92\,2-159\,7$, two carbinol ones at $\delta\,78\,5$ and 66 5, one methylene at $\delta\,28\,2$ and three methoxyls at $\delta\,55\,4$ (×1) and $56\,0$ (×2) and was thus assumed to be a catechin methyl ether. The proton signals attributable to ${\rm H}_2$ -4 ($\delta\,2\,90$), H-3 ($\delta\,4\,24$, m) and H-2 ($\delta\,4\,91$, s) in the ¹H NMR spectrum of 4 suggested 4 to be an epicatechin derivative. Three methyls appeared at $\delta\,3\,70$, $3\,78$, $3\,90$ in the aromatic methoxyl region. Two of the three methyls were associated with the hydroxyls at C-5 and C-7 from the presence of a base peak $m/z\,167$ ascribable to a fragment $[{\rm C}_9{\rm H}_{11}{\rm O}_3]^+$ (a) Another methyl group must be located at C-3' or C-4', but this remains to be determined

Fragment [a]

Partial structure A

Partial structure B

While, compound 5, colorless needles, mp $162-164^{\circ}$, $[\alpha]_D 0^{\circ}$, MS $m/z 330 [M]^+$, showed a ¹H NMR spectrum similar to that of 4 except for a decrease of one methoxyl signal and an appearance of one methylenedioxy signal $(2H, s, \delta 594)$ by comparison with that of 4 Therefore, this substance is the epicatechin derivative 5

Compound 6, a white crystalline powder, $[\alpha]_D$ 0°, MS m/z 206 [M]⁺ (C₁₂H₁₄O₃), exhibited signals at δ 7 20–7 44 (5H, arom protons), 6 12 (1H, dd, J = 4, 16 Hz), 6 72 (1H, d, J = 16 Hz) and 5 03 (1H, d, J = 4 Hz) in the ¹H NMR spectrum, suggesting a partial structure of **A** A further assignment of A₂B₂M type signals, δ 3 48 (2H, t, J = 10, 10 Hz), 4 23 (2H, dd, J = 5, 10 Hz) and 3 92 (1H, m) led 6 to have the additional partial structure **B** Moreover, in consideration of the ¹³C NMR spectrum and preferred conformational analysis, 6 must be represented as a cinnamic aldehyde cyclic glycerol 1,3-acetal possessing trans-substitutions at C-9 and C-2'

Compound 7, colorless crystals, mp $106-109^{\circ}$, $[\alpha]_D 0^{\circ}$, showed the same fragment pattern as that of 6 in its mass spectrum and its ¹³C NMR spectrum also resembled that of 6 indicating that 7 could be a stereoisomer of 6 Although the respective signals at a lower field than around $\delta 50$ were superimposable to those of 6, the signals at $\delta 408$ (2H, dd, J = 2, 10 Hz), 394 (2H, dd, J = 2, 10 Hz), 394 (2H, dd, J = 2, 10 Hz) were different from those of 6 and were assigned to the A_2B_2M portion Therefore, 7 can be represented as shown in the formula, in which substitutions at C-9 and C-2' in the cyclic glycerol part have the cis-configuration

EXPERIMENTAL

General Mps are uncorr 1 H NMR spectra at 100 MHz and 13 C NMR spectra at 50 01 MHz were obtained, chemical shifts are given in δ -values with TMS as the int standard Chromatographic colums were packed with Si gel (Merck 60) or alumina (Merck active 90) and TLC plates were precoated with Si gel (Merck 60 F-254) Detection was done by spraying 10% H_2SO_4 followed by heating

Extraction and isolation The H_2O extractive of Cinnamomi Cortex (Toko Keihi, 30 kg) was shaken with n-BuOH and the organic layer was evaporated in vacuo to give a residue, which was treated with Me_2CO and n-hexane in turn, and passed through alumina using MeOH and H_2O successively as solvent to afford the respective eluates (MeOH eluate 158 g, H_2O eluate 85 g after evaporation), both exhibiting the anti-allergic activity The residue obtained from the MeOH eluate was further partitioned between H_2O and C_6H_6 , the latter of which evaporated to give a residue (31 7 g) This was Si gel column chromatographed using n-hexane- Me_2CO (1 1) repeatedly to give compounds 1 (68 mg), 2 (36 mg), 3 (100 mg), 4 (80 mg), 5 (80 mg), 6 (180 mg) and 7 (100 mg) The residue obtained from the aq eluate was also Si gel CC using CHCl₃-MeOH- H_2O (8 2 0 2) to give 1 (2 6 g)

Lyoniresinol 3α-O-β-D-glucopyranoside (1) An amorphous powder, $[\alpha]_D^{2+}$ 22 4° (MeOH, c 1 01), IR $v_{\rm max}^{\rm KBr}$ cm $^{-1}$ 3600–3100 (OH), 1570, 1515, 1460 (arom ring) 1 H NMR (pyridine- d_5 δ 2 10 (m, H-2), 2 60 (m, H-3), 2 96 (m, H₂-1), 3 54 (OMe), 3 80 (3 × OMe), 6 68 (s, H-8), 6 84 (s, H-2', H₂-6') (Found C, 57 48, H, 6 61 C₂₈H₃₈O₁₃ requires C, 57 72, H, 6 57%)

Hepta-acetate (1a) of 1 1 was acetylated with Ac₂ O-pyridine in the usual manner to give the hepta-acetate (1a) of 1, colorless needles, mp 87–90°, [α] $_{\rm L}^{23}$ 0° (CHCl₃, c 1 00) MS (m/z) 876 [M] $_{\rm L}^{+}$, 834, 792, 774, 732, 588, 546, 505, 486, 460, 443, 425, 413, 384, 331 [C₁₄ H₁₉ O₉, glc4Ac] $_{\rm L}^{+}$, 169, 109 $_{\rm L}^{+}$ NMR (CDCl₃) δ 2 01–2 30 (7 × OAc), 2 62–2 80 (m, H₂-1), 3 18, 3 29 (each s, OMe-5), 3 71, 3 74, 3 82 (each s, 3 × arom OMe), 4 34 (d, J=6 Hz, H-4, 4 47 (d, J=7 Hz, glc anomeric proton), 6 32 (d, J=2 Hz, H₂-2′, H₂-6′), 6 54 (br s, H-8)

Aglycone (1b) (lyoniresinol) of 1 A soln of 1 (300 mg) in 0.5 N H₂SO₄ (10 ml) was refluxed for 22 hr, diluted with H₂O and extracted with EtOAc The organic layer was evaporated in vacuo to give a residue, which was crystallized from H₂O to give an aglycone (1b), colorless needles, mp 185–187°, $[\alpha]_D^{20} + 58.0^{\circ}$ (MeOH, c 0.50), Δ M_D (1–1b) = -113.2° IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹ 3600–3100 (OH), 1610, 1520, 1502, 1460 (arom ring) MS (m/z) 420 [M]⁺, 402, 371, 248, 217, 205, 183, 157 (Found C, 62.71, H, 6.67 Calc for C₂₂ H₂₈O₈ C, 62.84, H, 6.71%) The aq layer was passed through Amberlite IRA 400 to give D-glucose, $[\alpha]_D^{21} + 50.2^{\circ}$ (H₂O, c 0.62) 1b was identified with an authentic specimen by TLC, IR and MS

Tetra-acetate (1c) of 1b 1b was acetylated in the usual manner to give the tetra-acetate (1c) of 1b MS (m/z) 588, 546, 505, 486, 460, 444, 413, 384, 230, 217, 167 ¹H NMR (CDCl₃) δ 2 03, 2 08, 2 28, 2 30 (each s, 4 × OAc), 3 18 (s, OMe-5), 3 72 (s, 2 × OMe), 3 81 (OMe), 6 33 (s, H₂-2', H₂-6'), 6 53 (s, H-8)

3,4,5-Trimethoxyphenol β -D-apiofuranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranoside (2) A white amorphous powder, $[\alpha]_{0}^{26} - 262^{\circ}$ (MeOH, c 0 54) ¹H NMR (pyridine- d_{5}) δ 3 79 (s, OMe), 6 74 (s, arom H₂) ¹³C NMR (pyridine- d_{5}) δ 155 1 (C-1), 96 0 (C-2, C-6), 154 0 (C-3, C-5), 56 2 (2 × OMe, OMe-3, OMe-5), 60 6 (OMe, OMe-4), 103 1, 74 6, 78 1, 71 4, 77 0, 68 8 (glucosyl C-1'-C-6'), 110 6, 77 5, 80 1, 74 6, 65 0 (apiosyl C-1'-C-5") (Found C, 50 12, H, 6 26 C₂₀H₃₀O₁₃ requires C, 50 20; H, 6 32 %) A trace of 2 was acid hydrolysed with 2 N HCl-MeOH for 2 hr to detect methyl glucopyranoside and methyl apiofuranoside on TLC

Hexa-acetate (2a) of 2 Compound 2 (37 mg) was acetylated with Ac₂O-pyridine in the usual manner to give the hexa-acetate

(2a) (10.8 mg) of 2, colorless needles from $C_6H_6-Me_2CO$, mp $132-134^\circ$, $[\alpha]_D^{23} - 38.9^\circ$ (CHCl₃, c.0.54) MS (m/z) 730 [M]⁺, 547 [terminal peracetylated glucosyl apiosyl cation], 504, 487, 445, 402, 384, 361, 359, 331, 317, 259 [terminal peracetylated apiosyl cation], 184 $[C_9H_{12}O_4]^+$, 139 ¹H NMR (CDCl₃) $\delta 2.01-2.11$ $(m, 6 \times OAc)$, 3 78 (s, arom OMe), 3 82 $(s, arom OMe \times 2)$, 4 46, 4 78 $(each 1H, d, J = 12 Hz, api-H_2-4)$, 6 27 (s, arom H-2) ¹³C NMR (CDCl₃) $\delta 153.7$ ($\times 2$, s), 153.2 (s), 105.7 (d), 99.7 (d), 95.6 $(\times 2, d)$, 83.9 (s), 73.5 (d), 72.9 (d), 72.8 (d), 72.5 (d), 71.5 (d), 68.8 (d), 66.1 (t), 63.0 (t), 60.9 (q), 56.3 (q)

(±)-Syringaresinol (3) Colorless needles, mp $168-170^{\circ}$, $[\alpha]_{D}^{26}$ 0° (MeOH, c 0 50) IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹ 3600–3200 (OH), 1606, 1510, 1460 (arom ring) MS (m/z) 418 [M]⁺, 235, 210, 193, 182, 181, 167 ¹H NMR (CDCl₃) δ 3 10 (m, H₂- β), 3 89 (s, 4 × OMe), 3 80–4 38 (m, H₄- γ), 4 70 (br d, J = 3 Hz H₂- α), 6 56 (s, arom H₄) (Found C, 63 31, H, 6 25 Calc for C₂₂H₂₆O₈ C, 63 15, H, 6 26%)

Diacetate of 3 Colorless needles from MeOH, mp 116–118°, 1 H NMR (CDCl₃) δ 2 35 (2 × arom OAc), 3 12 (m, H₂- β), 3 84 (4 × OMe), 3 95–4 40 (m, H₄- γ), 4 76 (m, H₂- α), 6 58 (arom H₄) 5,7,3′ (or 4′)-Trimethyl-(-)-epicatechin (4) Colorless needles from n-hexane–Me₂CO, mp 117–119°, [α] $_{0}^{26}$ – 34 0° (CHCl₃, α 0 50), IR ν_{max}^{KBr} cm⁻¹ 3400 (OH), 1610, 1590, 1510 (arom ring) MS (m/z) 332 [M] $_{0}^{+}$, 314, 178, 167 [C₉H₁₁O₃] $_{0}^{+}$, 151, 137 $_{0}^{+}$ H NMR (CDCl₃) δ 2 82–2 98 (m, H₂-4), 3 76, 3 78, 3 90 (each s, arom OMe × 3), 4 24 (m, H-3), 4 91 (br s, H-2), 6 12 (d, J = 2 Hz, H-6), 6 17 (d, J = 2 Hz, H-8), 6 93–7 06 (m, H-2′, H-5′, H-6′) $_{0}^{+}$ 13°C NMR (CDCl₃) δ 78 5, 66 5, 28 2, 155 2, 92 2, 159 7, 92 2, 159 7, 100 3 (C-2–C-10), 130 2, 109 1 (C-1′, C-2′), 145 5, 146 7, (C-3′, C-4′ or alternation), 114 4, 119 4 (C-5′, C-6′) (Found C, 64 98, H, 6 02 C₁₈H₂₀O₆ requires C, 65 05, H, 6 07°₉)

Tetra-acetate of 4 Compound 4 (40 mg) was acetylated with Ac₂O (2 ml) and pyridine (2 ml) in the usual manner to afford the tetra-acetate of 4, ¹H NMR (CDCl₃) δ 1 88, 2 28 (each s, OAc × 2), 2 90 (d, J = 4 Hz, H₂-4), 3 75 (s, arom OMe × 2), 3 81 (s, arom OMe), 5 00 (br s, H-2), 5 42 (m, H-3), 6 08 (d, J = 2 Hz, H-6), 6 17 (d, J = 2 Hz, H-8), 7 01–7 10 (m, H-2', H-5', H-6')

57-Dimethyl 3',4'-di-O-methylene-(\pm)-epicatechin (5) Colorless needles from n-hexane-Me₂CO, mp 162-164°, $[\alpha]_D^{26}$ 0° (CHCl₃, ϵ 0 50), IR $\nu_{\rm max}^{\rm KB}$ cm⁻¹ 3400 (OH), 1610, 1590, 1510 (arom ring) MS (m/z) 330 [M]⁺, 167 [C₉ H₁₁ O₃]⁺ ¹ H NMR (CDCl₃) δ 2 84-2 96 (m, H₂-4), 3 75, 3 77 (each s, arom OMe × 2), 4 22 (m, H-3), 4 90 (br s, H-2), 5 94 (s, dioxymethylene), 6 07 (d, J = 2 Hz, H-6) 6 13 (d, J = 2 Hz, H-8), 6 74-7 06 (m, H-2', H-5', H-6') (Found C, 65 26, H, 5 47 C₁₈ H₁₈ O₆ requires C, 65 44, H, 5 49%)

Cinnamic aldehyde cyclic glycerol 1,3-acetal (9,2'-trans) (6) An amorphous powder, $[\alpha]_D^{26}$ 0° (CHCl₃, c 0 50) IR $v_{\rm max}^{\rm KBr}$ cm $^{-1}$ 3500 (OH), 2000–1600 (monosubstituted C₆C₆), 1758, 1650, 1590, 1570 (arom ring) MS (m/z) 206 [M] $^+$, 175, 149, 131, 115, 104, 77 1 H NMR (CDCl₃) δ 3 48 (dd, J = 8, 10 Hz, H_A-1', H_A-3'), 4 23 (dd, J = 5, 10 Hz, H_B-1', H_B-3') 3 92 (m, H-2'), 5 03 (d, J = 4 Hz, H-9), 6 15 (dd, J = 4, 16 Hz, H-8), 6 79 (d, J = 16 Hz, H-7), 7 10–7 46 (m, arom H-5) 13 C NMR (CDCl₃) δ 135 8 (C-1), 126 8 (C-2, C-6), 128 5 (C-3, C-5), 128 2 (C-4), 124 6 (C-7), 133 9 (C-8), 100 1 (C-9), 71 3 (C-1', C-3'), 61 3 (C-2') (Found C, 69 72, H, 6 79 C₁₂ H₁₄O₃ requires C, 69 88, H, 6 84%)

Cinnamic aldehyde cyclic glycerol 1,3-acetal (9,2'-cis) (7) Colorless leaflets, mp $106-109^{\circ}$, $[\alpha]_{2}^{26}0^{\circ}$ (CHCl₃, c 0 50), IR $v_{\rm KBT}^{\rm KBT}$ cm⁻¹ 3500 (OH), 2000–1600 (monosubstituted C₆H₆), 1758, 1650, 1590, 1570 (arom ring) MS (m/z) 206 [M]⁺, 175, 149, 131, 115, 104, 77 ¹H NMR (CDCl₃) δ 3 14 (d, J = 11 Hz, OH-2'), 3 54 (br d, J = 11 Hz, H-2'), 3 94 (dd, J = 2, 10 Hz, H_A-1', H_A-3'), 4 08 (dd, J = 2, 10 Hz, H_B-1', H_B-3'), 5 14 (d, J = 4 Hz, H-9), 6 15 (dd, J = 4, 16 Hz, H-8), 6 79 (d, J = 16 Hz, H-7), 7 10–7 46 (m, arom H-5) ¹³C NMR (CDCl₃) δ 135 9 (C-1), 126 8 (C-2, C-6), 128 5 (C-3, C-5), 128 4 (C-4), 125 1 (C-7), 133 7 (C-8), 101 1 (C-9),

71 9 (C-1', C-3'), 63 9 (C-2') (Found C, 69 68, H, 6 86 $C_{12}H_{14}O_3$ requires C, 69 88, H, 6 84%)

Acknowledgements—We are very grateful to Professor Dr J Sakakıbara, Nagoya City University, for providing the lyonir-esinol and Associate Professor Dr M Shibuya, Tokushima University and Dr G Nonaka, Kyushu University, for discussion and suggestions for the assignment of ¹H NMR spectra

REFERENCES

- 1 Yagi, A, Tokubuchi, N, Nohara, T, Nonaka, G, Nishioka, I and Koda, A (1980) Chem Pharm Bull 28, 1432
- 2 Nohara, T, Nishioka, I, Tokubuchi, N, Miyahara, K and Kawasaki, T (1980) Chem Pharm Bull 28, 1969
- 3 Nohara, T., Tokubuchi, N., Kuroiwa, M. and Nishioka, I. (1980) Chem Pharm Bull. 28, 2682
- 4 Nohara, T, Kashiwada, Y, Tomimatsu, T, Kido, M, Tokubuchi, N and Nishioka, I (1980) Tetrahedron Letters 2647
- 5 Kashiwada, Y, Nohara, T, Tomimatsu, T and Nishioka, I (1981) Chem Pharm Bull 29, 2686
- 6 Nohara, T, Kashiwada, Y, Murakami, K, Tomimatsu, T,

- Kido, M, Yagi, A and Nishioka, I (1981) Chem Pharm Bull 29, 2451
- 7 Nakano, K, Nohara, T, Tomimatsu, T and Nishioka, I (1981) Yakugaku Zasshi 101, 1052
- 8 Nohara, T, Kashiwada, Y, Tomimatsu, T and Nishioka, I (1982) Phytochemistry 21, 2130
- 9 Yasue, M and Kato, Y (1960) Yakugaku Zasshi 80, 1013
- 10 Yasue, M and Kato, Y (1961) Yakugaku Zasshi 81, 529
- 11 Freudenberg, K and Weinges, K (1959) Tetrahedron Letters 17, 19
- 12 Kato, Y (1963) Chem Pharm Bull 11, 823
- 13 Kato, Y (1966) Chem Pharm Bull 14, 1438
- 14 Klyne, W, Stevenson, R and Swan, R J (1966) J Chem Soc C 1966, 893
- 15 Hostettler, F D and Seikel, M K (1960) Tetrahedron 25, 2325
- 16 Sakakibara, J, Ina, H and Yasue, M (1974) Yakugaku Zasshi 94, 1377
- 17 Vecchietti, V., Ferrari, G., Orsini, F. and Pelizzoni, F. (1979) Phytochemistry 18, 1847
- 18 Kasai, R, Suzuo, M, Asakawa, J and Tanaka, O (1977) Tetrahedron Letters 175
- 19 Tori, K, Seo, S, Yoshimura, Y and Tomita, T (1977) Tetrahedron Letters 179
- 20 Kudo, K, Nohara, T, Komori, T, Kawasaki, T and Schulten, H R (1980) Planta Med 40, 250